A quadcopter, also called a quadrotor helicopter or quadrotor, is a multirotor helicopter that is lifted and propelled by four rotors. Quadcopters are classified as rotorcraft, as opposed to fixed-wing aircraft, because their lift is generated by a set of rotors (vertically oriented propellers).
Quadcopters generally use two pairs of identical fixed pitched propellers; two clockwise (CW) and two counterclockwise (CCW). These use independent variation of the speed of each rotor to achieve control. By changing the speed of each rotor it is possible to specifically generate a desired total thrust; to locate for the centre of thrust both laterally and longitudinally; and to create a desired total torque, or turning force.
Quadcopters differ from conventional helicopters, which use rotors that are able to vary the pitch of their blades dynamically as they move around the rotor hub. In the early days of flight, quadcopters (then referred to either as 'quadrotors' or 'helicopters') were seen as possible solutions to some of the persistent problems in vertical flight. Torque-induced control issues (as well as efficiency issues originating from the tail rotor, which generates no useful lift) can be eliminated by counter-rotation, and the relatively short blades are much easier to construct. A number of manned designs appeared in the 1920s and 1930s. These vehicles were among the first successful heavier-than-air vertical take off and landing (VTOL) vehicles. However, early prototypes suffered from poor performance, and latter prototypes required too much pilot work load, due to poor stability augmentation and limited control authority.
In the late 2000s, advances in electronics allowed the production of cheap lightweight flight controllers, accelerometers (IMU), global positioning system and cameras. This resulted in the quadcopter configuration becoming popular for small unmanned aerial vehicles. With their small size and maneuverability, these quadcopters can be flown indoors as well as outdoors.
At a small size, quadcopters are cheaper and more durable than conventional helicopters due to their mechanical simplicity. Their smaller blades are also advantageous because they possess less kinetic energy, reducing their ability to cause damage. For small-scale quadcopters, this makes the vehicles safer for close interaction. It is also possible to fit quadcopters with guards that enclose the rotors, further reducing the potential for damage. However, as size increases, fixed propeller quadcopters develop disadvantages over conventional helicopters. Increasing blade size increases their momentum. This means that changes in blade speed take longer, which negatively impacts control. Helicopters do not experience this problem as increasing the size of the rotor disk does not significantly impact the ability to control blade pitch.
Due to their ease of construction and control, quadcopter aircraft are frequently used as amateur model aircraft projects.
Maps, Directions, and Place Reviews
History
Early attempts
Recent developments
In the last few decades, small-scale unmanned aerial vehicles have been used for many applications. The need for aircraft with greater maneuverability and hovering ability has led to a rise in quadcopter research. The four-rotor design allows quadcopters to be relatively simple in design yet highly reliable and maneuverable. Research is continuing to increase the abilities of quadcopters by making advances in multi-craft communication, environment exploration, and maneuverability. If these developing qualities can be combined, quadcopters would be capable of advanced autonomous missions that are currently not possible with other vehicles.
Some current programs include:
- The Bell Boeing Quad TiltRotor concept takes the fixed quadcopter concept further by combining it with the tilt rotor concept for a proposed C-130 sized military transport.
- AeroQuad and ArduCopter are open-source hardware and software projects based on Arduino for the DIY construction of quadcopters.
- Parrot AR.Drone is a small radio controlled quadcopter with cameras attached to it built by Parrot SA, designed to be controllable by smartphones or tablet devices.
- Nixie is a small camera-equipped drone that can be worn as a wrist band.
Several camera-drone projects have turned into high-profile commercial failures:
- Zano (drone) - a high-profile Kickstarter project to build a quadcopter-camera drone, Zano failed after delivering only a small fraction of their orders in a partially nonfunctional state.
- Lily Camera - a startup attempting to make a quadcopter-camera drone, sued by the San Francisco District Attorney after they closed down without fulfilling any of their pre-orders.
In July 2015, a video was posted on YouTube of an airborne quadcopter firing a pistol four times in a wooded area, sparking regulatory concerns.
Cheapest Diy Quadcopter Video
Applications
Research platform
Quadcopters are a useful tool for university researchers to test and evaluate new ideas in a number of different fields, including flight control theory, navigation, real time systems, and robotics. In recent years many universities have shown quadcopters performing increasingly complex aerial manoeuvres. Swarms of quadcopters can hover in mid-air, fly in formations, and autonomously perform complex flying routines such as flips, darting through hula hoops and organising themselves to fly through windows as a group.
There are numerous advantages to using quadcopters as versatile test platforms. They are relatively cheap, available in a variety of sizes and their simple mechanical design means that they can be built and maintained by amateurs. Due to the multi-disciplinary nature of operating a quadcopter, academics from a number of fields need to work together in order to make significant improvements to the way quadcopters perform. Quadcopter projects are typically collaborations between computer science, electrical engineering and mechanical engineering specialists.
Military and law enforcement
Quadcopter unmanned aerial vehicles are used for surveillance and reconnaissance by military and law enforcement agencies, as well as search and rescue missions in urban environments. One such example is the Aeryon Scout, created by Canadian company Aeryon Labs, which is a small UAV that can quietly hover in place and use a camera to observe people and objects on the ground. The company claims that the machine played a key role in a drug bust in Central America by providing visual surveillance of a drug trafficker's compound deep in the jungle (Aeryon won't reveal the country's name and other specifics).
After a recreational quadcopter (or "drone") crashed on the White House lawn early in the morning of January 26, 2015, the Secret Service began a series of test flights of such equipment in order to fashion a security protocol against hostile quadcopters.
During the Battle of Mosul it was reported that commercially available quadcopters and drones were being used by Islamic State of Iraq and the Levant (ISIL) as surveillance and weapons delivery platforms using improvised cradles to drop grenades and other explosives. The ISIL drone facility became a target of Royal Air Force strike aircraft.
Photography
The largest use of quadcopters in the USA has been in the field of aerial imagery. Quadcopter UAVs are suitable for this job because of their autonomous nature and huge cost savings. Drones have also been used for light-painting photography.
Journalism
In 2014 The Guardian reported that major media outlets have started to put serious effort into exploring the use of drones for reporting and verifying news on events that include floods, protests and wars.
Some media outlets and newspapers are using drones to capture photography of celebrities.
Drone-delivery
In December 2013, the Deutsche Post gathered international media attention with the project Parcelcopter, in which the company tested the shipment of medical products by drone delivery. Using a Microdrones md4-1000 quadrocopter, packages were flown from a pharmacy across the Rhine River. It was the first civilian package delivery via drones.
Art
Quadcopters have also been used in various art projects including but not limited to drone photography. They may be used in performance art with new degrees of positional control that allows for new uses of puppets, characters, lights and cameras. They have also been used in light shows including most prominently in the 5 February 2017 Super Bowl LI halftime show in which Lady Gaga, in a pre-recorded segment, was accompanied by a swarm of 300 LED-equipped Intel "Shooting Star" drones forming an American flag in the sky.
Sport
Quadcopters are used all over the world for racing (also known as "drone racing") and freestyle events. Racing and freestyle quadcopters are built for speed and agility. Racing and freestyle drones tend to be relatively small in size, with 250mm between the propeller shafts and/or 5-6 inch props being the usually upper end of the size scale.
Most pilots race and freestyle quadcopters smaller than 250mm down to the "Tiny Whoop" size as small as 50-60mm between the propeller shafts.
Racers race in both indoor and outdoor events typically following a course defined by ground markers e,.g. rope or "witches hats", "gates" and flags.
Gates are arches or other shaped frames that a quad must fly through. Flags must be flown around.
There are at least two international drone racing organisations/promotions including the Drone Racing League and Multi GP.
Freestyle involves flying aerobatic tricks, many of which are not possible with other craft. While freestyle and racing drones appear fairly similar, and a freestyle drone can be used for racing and vice-versa, they are actually two different classes of drone and two different though related sports, with many pilots participating in both.
Although commercially ready to fly (RTF) and almost ready to fly (ARF) sport drones are becoming more common, most racing quadcopters are custom built by their pilots who weigh a wide variety of factors into their component selection to balance speed, agility, weight, and cost.
Law
In the United States
In the United States, the legality of the use of remotely controlled aircraft for commercial purposes has been the source of legal issues. Raphael Pirker, a professional photographer, was fined by the FAA in 2012 for "endangering people on the ground" (a regulatory infraction) after he used a Zephyr fixed-wing drone--a "a five-pound Styrofoam model airplane"--to take aerial photos of the University of Virginia's campus in 2011. In March 2014, a federal administrative law judge ruled in Pirker's favor, determining that his drone was a "model aircraft" and thus not subject to FAA regulations on other types of aircraft. The FAA appealed to the National Transportation Safety Board; the NTSB appointed a new administrative law judge, who overturned the earlier finding and ruled that under the FAA's enabling act, the FAA had jurisdiction to regulate "any contrivance invented, used or designed to navigate, or fly in, the air," irrespective of whether it was unmanned or manned. Pirker was fined $10,000, but in January 2015 settled the matter with the FAA, agreeing to pay a $1,100 fine without admitting guilt. According to a report in Aviation Week, the matter "became a cause célèbre among the model aircraft and recreational and commercial small drone communities."
In December 2014, the FAA released a video detailing many best practices for new drone pilots, including advisories such as keeping their machines below 400 feet and always within visual sight.
As of March 2015, the United States created an interim policy for the legal use of unmanned aerial vehicles for commercial use where each operator can apply for an exemption filed under Section 333 with the FAA. As of August 2015 the FAA had granted over 1300 petitions to different use cases and industries. Furthermore, FAA has started discussions in November 2015 to require all hobbyists to also register personal drones to FAA website.
In December 2014, FAA started the registration process for all model aircraft weighing more than 0.55 pounds (? 250 grams) and less than 55 pounds (? 25 kilograms), including payloads such as all on-board cameras and other accessories. FAA's decision on the matter caused resistance from the hobbyist community at the time. In October 2015 the FAA issued rules legally requiring registration, starting January 2016, but on May 19, 2017, the United States Court of Appeals for the Washington D.C. circuit ruled that this violated the 2012 FAA Modernization and Reform Act, which states that the FAA "may not promulgate any rule or regulation regarding a model aircraft." The FAA continues to allow registration on a voluntary basis, as well as requiring it for commercial use, but states that it is not required if "flying under the Special Rule for Model Aircraft" (recreational hobby use).
In addition to the registration requirement, FAA has also released various operational requirements as follows:
- Fly below 400 feet altitude.
- Keep your unmanned aircraft in sight all times.
- Never fly near manned aircraft, especially near airports.
- Never fly over groups of people, stadiums or sporting events.
- Never fly near emergency response efforts.
Flight dynamics
Each rotor produces both a thrust and torque about its center of rotation, as well as a drag force opposite to the vehicle's direction of flight. If all rotors are spinning at the same angular velocity, with rotors one and three rotating clockwise and rotors two and four counterclockwise, the net aerodynamic torque, and hence the angular acceleration about the yaw axis, is exactly zero, which mean there is no need for a tail rotor as on conventional helicopters. Yaw is induced by mismatching the balance in aerodynamic torques (i.e., by offsetting the cumulative thrust commands between the counter-rotating blade pairs).
Coaxial configuration
In order to allow more power and stability at reduced weight, a quadcopter, like any other multirotor can employ a coaxial rotor configuration. In this case, each arm has two motors running in opposite directions (one facing up and one facing down).
Vortex ring state
All quadcopters are subject to normal rotorcraft aerodynamics, including vortex ring state.
Mechanical structure
The main mechanical components needed for construction are the frame, propellers (either fixed-pitch or variable-pitch), and the electric motors. For best performance and simplest control algorithms, the motors and propellers should be placed equidistant. Recently, carbon fiber composites have become popular due to their light weight and structural stiffness.
The electrical components needed to construct a working quadcopter are similar to those needed for a modern RC helicopter. They are the electronic speed control module, on-board computer or controller board, and battery. Typically, a hobby transmitter is also used to allow for human input.
Autonomous flight
Quadcopters and other multicopters often can fly autonomously. Many modern flight controllers use software that allows the user to mark "way-points" on a map, to which the quadcopter will fly and perform tasks, such as landing or gaining altitude. The PX4 autopilot system, an open-source software/hardware combination in development since 2009, has since been adopted by both hobbyists and drone manufacturing companies alike to give their quadcopter projects flight-control capabilities. Other flight applications include crowd control between several quadcopters where visual data from the device is used to predict where the crowd will move next and in turn direct the quadcopter to the next corresponding waypoint.
Source of the article : Wikipedia
EmoticonEmoticon